Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 30(9): 1962-1978, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33604965

RESUMO

The genomic variation of an invasive species may be affected by complex demographic histories and evolutionary changes during the invasion. Here, we describe the relative influence of bottlenecks, clonality, and population expansion in determining genomic variability of the widespread red macroalga Agarophyton vermiculophyllum. Its introduction from mainland Japan to the estuaries of North America and Europe coincided with shifts from predominantly sexual to partially clonal reproduction and rapid adaptive evolution. A survey of 62,285 SNPs for 351 individuals from 35 populations, aligned to 24 chromosome-length scaffolds indicate that linkage disequilibrium (LD), observed heterozygosity (Ho ), Tajima's D, and nucleotide diversity (Pi) were greater among non-native than native populations. Evolutionary simulations indicate LD and Tajima's D were consistent with a severe population bottleneck. Also, the increased rate of clonal reproduction in the non-native range could not have produced the observed patterns by itself but may have magnified the bottleneck effect on LD. Elevated marker diversity in the genetic source populations could have contributed to the increased Ho and Pi observed in the non-native range. We refined the previous invasion source region to a ~50 km section of northeastern Honshu Island. Outlier detection methods failed to reveal any consistently differentiated loci shared among invaded regions, probably because of the complex A. vermiculophyllum demographic history. Our results reinforce the importance of demographic history, specifically founder effects, in driving genomic variation of invasive populations, even when localized adaptive evolution and reproductive system shifts are observed.


Assuntos
Efeito Fundador , Variação Genética , Europa (Continente) , Genética Populacional , Genômica , Humanos , Japão , Desequilíbrio de Ligação , América do Norte
2.
J Phycol ; 57(1): 279-294, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33098662

RESUMO

For many taxa, including isomorphic haplodiplontic macroalgae, determining sex and ploidy is challenging, thereby limiting the scope of some population demographic and genetic studies. Here, we used double-digest restriction site-associated DNA sequencing (ddRAD-seq) to identify sex-linked molecular markers in the widespread red alga Agarophyton vermiculophyllum. In the ddRAD-seq library, we included 10 female gametophytes, 10 male gametophytes, and 16 tetrasporophytes from one native and one non-native site (N = 40 gametophytes and N = 32 tetrasporophytes total). We identified seven putatively female-linked and 19 putatively male-linked sequences. Four female- and eight male-linked markers amplified in all three life cycle stages. Using one female- and one male-linked marker that were sex-specific, we developed a duplex PCR and tested the efficacy of this assay on a subset of thalli sampled at two sites in the non-native range. We confirmed ploidy based on the visual observation of reproductive structures and previous microsatellite genotyping at 10 polymorphic loci. For 32 vegetative thalli, we were able to assign sex and confirm ploidy in these previously genotyped thalli. These markers will be integral to ongoing studies of A. vermiculophyllum invasion. We discuss the utility of RAD-seq over other approaches previously used, such as RAPDs (random amplified polymorphic DNA), for future work designing sex-linked markers in other haplodiplontic macroalgae for which genomes are lacking.


Assuntos
Rodófitas , Alga Marinha , Feminino , Genoma , Células Germinativas Vegetais , Masculino , Rodófitas/genética , Análise de Sequência de DNA
3.
Artigo em Inglês | MEDLINE | ID: mdl-31316686

RESUMO

We present a curriculum description, an initial student outcome investigation, and sample scientific results for a representative Course-Based Undergraduate Research Experience (CURE) that is part of the "Undergraduates Phenotyping Arabidopsis Knockouts" (unPAK) network. CUREs in the unPAK network characterize quantitative phenotypes of the model plant Arabidopsis from across environments to uncover connections between genotype and phenotype. Students in unPAK CUREs grow plants in a replicated block design and make quantitative measurements throughout the semester. This CURE enables students to answer plant science questions that draw from fields such as environmental science, genetics, ecology, and evolution. Findings indicate that this experience provides students with opportunities to make relevant scientific discoveries. Eighty percent of student datasets produced from the CURE met criteria for inclusion in the project database, indicative of student learning in data collection and analysis of quantitative plant traits. Student datasets uncovered novel effects of mutation on plant form. In addition, students' science self-efficacy increased as a result of course participation, and faculty feedback on course implementation was positive. We present unPAK as a new network that supports CUREs and research experiences focused on collecting biological data made publicly available to the scientific community. The unPAK CUREs can be tailored to address instructor interests or pedagogical needs while involving students in research investigating quantitative plant phenotypes.

4.
Plant J ; 100(1): 199-211, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31155775

RESUMO

Determining how genes are associated with traits in plants and other organisms is a major challenge in modern biology. The unPAK project - undergraduates phenotyping Arabidopsis knockouts - has generated phenotype data for thousands of non-lethal insertion mutation lines within a single Arabidopsis thaliana genomic background. The focal phenotypes examined by unPAK are complex macroscopic fitness-related traits, which have ecological, evolutionary and agricultural importance. These phenotypes are placed in the context of the wild-type and also natural accessions (phytometers), and standardized for environmental differences between assays. Data from the unPAK project are used to describe broad patterns in the phenotypic consequences of insertion mutation, and to identify individual mutant lines with distinct phenotypes as candidates for further study. Inclusion of undergraduate researchers is at the core of unPAK activities, and an important broader impact of the project is providing students an opportunity to obtain research experience.


Assuntos
Arabidopsis/genética , Mutagênese Insercional/métodos , Mutação , Fenômica/métodos , DNA Bacteriano/genética , Meio Ambiente , Variação Genética , Genômica/métodos , Fenótipo , Plantas Geneticamente Modificadas
5.
Ecol Lett ; 22(8): 1274-1284, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31149765

RESUMO

Plant-soil feedback (PSF) theory provides a powerful framework for understanding plant dynamics by integrating growth assays into predictions of whether soil communities stabilise plant-plant interactions. However, we lack a comprehensive view of the likelihood of feedback-driven coexistence, partly because of a failure to analyse pairwise PSF, the metric directly linked to plant species coexistence. Here, we determine the relative importance of plant evolutionary history, traits, and environmental factors for coexistence through PSF using a meta-analysis of 1038 pairwise PSF measures. Consistent with eco-evolutionary predictions, feedback is more likely to mediate coexistence for pairs of plant species (1) associating with similar guilds of mycorrhizal fungi, (2) of increasing phylogenetic distance, and (3) interacting with native microbes. We also found evidence for a primary role of pathogens in feedback-mediated coexistence. By combining results over several independent studies, our results confirm that PSF may play a key role in plant species coexistence, species invasion, and the phylogenetic diversification of plant communities.


Assuntos
Micorrizas , Filogenia , Microbiologia do Solo , Plantas , Solo
6.
Nat Ecol Evol ; 2(9): 1403-1407, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30061563

RESUMO

Ecological theory suggests that coexistence of many species within communities requires negative frequency-dependent feedbacks to prevent exclusion of the least fit species. For plant communities, empirical evidence of negative frequency dependence driving species coexistence and diversity patterns is rapidly accumulating, but connecting these findings to theory has been difficult as corresponding theoretical frameworks only consider small numbers of species. Here, we show how frequency-dependent feedback constrains community coexistence, regardless of the number of species and inherent fitness inequalities between them. Any interaction network can be characterized by a single community interaction coefficient, IC, which determines whether community-level feedback is positive or negative. Negative feedback is a necessary (but not sufficient) condition for persistence of the entire community. Even in cases where the coexistence equilibrium state cannot recover from perturbations, IC < 0 can enable species persistence via cyclic succession. The number of coexisting species is predicted to increase with the average strength of negative feedback. This prediction is supported by patterns of tree species diversity in more than 200,000 deciduous forest plots in the eastern United States, which can be reproduced in simulations that span the observed range of community feedback. By providing a quantitative metric for the strength of negative feedback needed for coexistence, we can now integrate theory and empirical data to test whether observed feedback-diversity correlations are strong enough to infer causality.


Assuntos
Ecossistema , Plantas , Modelos Teóricos , Solo
7.
Evol Appl ; 11(5): 781-793, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29875819

RESUMO

The rapid evolution of non-native species can facilitate invasion success, but recent reviews indicate that such microevolution rarely yields expansion of the climatic niche in the introduced habitats. However, because some invasions originate from a geographically restricted portion of the native species range and its climatic niche, it is possible that the frequency, direction, and magnitude of phenotypic evolution during invasion have been underestimated. We explored the utility of niche shift analyses in the red seaweed Gracilaria vermiculophylla, which expanded its range from the northeastern coastline of Japan to North America, Europe, and northwestern Africa within the last 100 years. A genetically informed climatic niche shift analysis indicates that native source populations occur in colder and highly seasonal habitats, while most non-native populations typically occur in warmer, less seasonal habitats. This climatic niche expansion predicts that non-native populations evolved greater tolerance for elevated heat conditions relative to native source populations. We assayed 935 field-collected and 325 common-garden thalli from 40 locations, and as predicted, non-native populations had greater tolerance for ecologically relevant extreme heat (40°C) than did Japanese source populations. Non-native populations also had greater tolerance for cold and low-salinity stresses relative to source populations. The importance of local adaptation to warm temperatures during invasion was reinforced by evolution of parallel clines: Populations from warmer, lower-latitude estuaries had greater heat tolerance than did populations from colder, higher-latitude estuaries in both Japan and eastern North America. We conclude that rapid evolution plays an important role in facilitating the invasion success of this and perhaps other non-native marine species. Genetically informed ecological niche analyses readily generate clear predictions of phenotypic shifts during invasions and may help to resolve debate over the frequency of niche conservatism versus rapid adaptation during invasion.

8.
Ecol Evol ; 7(12): 4432-4447, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28649353

RESUMO

The identification of native sources and vectors of introduced species informs their ecological and evolutionary history and may guide policies that seek to prevent future introductions. Population genetics provides a powerful set of tools to identify origins and vectors. However, these tools can mislead when the native range is poorly sampled or few molecular markers are used. Here, we traced the introduction of the Asian seaweed Gracilaria vermiculophylla (Rhodophyta) into estuaries in coastal western North America, the eastern United States, Europe, and northwestern Africa by genotyping more than 2,500 thalli from 37 native and 53 non-native sites at mitochondrial cox1 and 10 nuclear microsatellite loci. Overall, greater than 90% of introduced thalli had a genetic signature similar to thalli sampled from the coastline of northeastern Japan, strongly indicating this region served as the principal source of the invasion. Notably, northeastern Japan exported the vast majority of the oyster Crassostrea gigas during the 20th century. The preponderance of evidence suggests G. vermiculophylla may have been inadvertently introduced with C. gigas shipments and that northeastern Japan is a common source region for estuarine invaders. Each invaded coastline reflected a complex mix of direct introductions from Japan and secondary introductions from other invaded coastlines. The spread of G. vermiculophylla along each coastline was likely facilitated by aquaculture, fishing, and boating activities. Our ability to document a source region was enabled by a robust sampling of locations and loci that previous studies lacked and strong phylogeographic structure along native coastlines.

9.
Mol Ecol Resour ; 17(1): 101-109, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27736016

RESUMO

Simulations are a key tool in molecular ecology for inference and forecasting, as well as for evaluating new methods. Due to growing computational power and a diversity of software with different capabilities, simulations are becoming increasingly powerful and useful. However, the widespread use of simulations by geneticists and ecologists is hindered by difficulties in understanding these softwares' complex capabilities, composing code and input files, a daunting bioinformatics barrier and a steep conceptual learning curve. skelesim (an R package) guides users in choosing appropriate simulations, setting parameters, calculating genetic summary statistics and organizing data output, in a reproducible pipeline within the R environment. skelesim is designed to be an extensible framework that can 'wrap' around any simulation software (inside or outside the R environment) and be extended to calculate and graph any genetic summary statistics. Currently, skelesim implements coalescent and forward-time models available in the fastsimcoal2 and rmetasim simulation engines to produce null distributions for multiple population genetic statistics and marker types, under a variety of demographic conditions. skelesim is intended to make simulations easier while still allowing full model complexity to ensure that simulations play a fundamental role in molecular ecology investigations. skelesim can also serve as a teaching tool: demonstrating the outcomes of stochastic population genetic processes; teaching general concepts of simulations; and providing an introduction to the R environment with a user-friendly graphical user interface (using shiny).


Assuntos
Biologia Computacional/métodos , Simulação por Computador , Genética Populacional/métodos , Bioestatística , Ecossistema , Software
10.
Mol Ecol ; 25(16): 3801-16, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27286564

RESUMO

Baker's Law predicts uniparental reproduction will facilitate colonization success in novel habitats. While evidence supports this prediction among colonizing plants and animals, few studies have investigated shifts in reproductive mode in haplo-diplontic species in which both prolonged haploid and diploid stages separate meiosis and fertilization in time and space. Due to this separation, asexual reproduction can yield the dominance of one of the ploidy stages in colonizing populations. We tested for shifts in ploidy and reproductive mode across native and introduced populations of the red seaweed Gracilaria vermiculophylla. Native populations in the northwest Pacific Ocean were nearly always attached by holdfasts to hard substrata and, as is characteristic of the genus, haploid-diploid ratios were slightly diploid-biased. In contrast, along North American and European coastlines, introduced populations nearly always floated atop soft-sediment mudflats and were overwhelmingly dominated by diploid thalli without holdfasts. Introduced populations exhibited population genetic signals consistent with extensive vegetative fragmentation, while native populations did not. Thus, the ecological shift from attached to unattached thalli, ostensibly necessitated by the invasion of soft-sediment habitats, correlated with shifts from sexual to asexual reproduction and slight to strong diploid bias. We extend Baker's Law by predicting other colonizing haplo-diplontic species will show similar increases in asexuality that correlate with the dominance of one ploidy stage. Labile mating systems likely facilitate colonization success and subsequent range expansion, but for haplo-diplontic species, the long-term eco-evolutionary impacts will depend on which ploidy stage is lost and the degree to which asexual reproduction is canalized.


Assuntos
Diploide , Ecossistema , Genética Populacional , Gracilaria/genética , Haploidia , Evolução Biológica , Oceano Pacífico
11.
PeerJ ; 3: e1159, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26339541

RESUMO

Microsatellite loci are popular molecular markers due to their resolution in distinguishing individual genotypes. However, they have rarely been used to explore the population dynamics in species with biphasic life cycles in which both haploid and diploid stages develop into independent, functional organisms. We developed microsatellite loci for the haploid-diploid red seaweed Gracilaria vermiculophylla, a widespread non-native species in coastal estuaries of the Northern hemisphere. Forty-two loci were screened for amplification and polymorphism. Nine of these loci were polymorphic across four populations of the extant range with two to eleven alleles observed. Mean observed and expected heterozygosities ranged from 0.265 to 0.527 and 0.317 to 0.387, respectively. Overall, these markers will aid in the study of the invasive history of this seaweed and further studies on the population dynamics of this important haploid-diploid primary producer.

12.
New Phytol ; 205(3): 1153-1163, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25348775

RESUMO

Predicting the response of fine roots to increased atmospheric CO2 concentration has important implications for carbon (C) and nutrient cycling in forest ecosystems. Root architecture is known to play an important role in how trees acquire soil resources in changing environments. However, the effects of elevated CO2 on the fine-root architecture of trees remain unclear. We investigated the architectural response of fine roots exposed to 14 yr of CO2 enrichment and 6 yr of nitrogen (N) fertilization in a Pinus taeda (loblolly pine) forest. Root traits reflecting geometry, topology and uptake function were measured on intact fine-root branches removed from soil monoliths and the litter layer. CO2 enrichment resulted in the development of a fine-root pool that was less dichotomous and more exploratory under N-limited conditions. The per cent mycorrhizal colonization did not differ among treatments, suggesting that root growth and acclimation to elevated CO2 were quantitatively more important than increased mycorrhizal associations. Our findings emphasize the importance of architectural plasticity in response to environmental change and suggest that changes in root architecture may allow trees to effectively exploit larger volumes of soil, thereby pre-empting progressive nutrient limitations.


Assuntos
Dióxido de Carbono/farmacologia , Nitrogênio/farmacologia , Pinus/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Solo/química , Fertilizantes , Micorrizas/efeitos dos fármacos , Micorrizas/fisiologia , Pinus/efeitos dos fármacos , Pinus/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia
13.
Tree Physiol ; 34(9): 955-65, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25056092

RESUMO

Root systems serve important roles in carbon (C) storage and resource acquisition required for the increased photosynthesis expected in CO2-enriched atmospheres. For these reasons, understanding the changes in size, distribution and tissue chemistry of roots is central to predicting the ability of forests to capture anthropogenic CO2. We sampled 8000 cm(3) soil monoliths in a pine forest exposed to 14 years of free-air-CO2-enrichment and 6 years of nitrogen (N) fertilization to determine changes in root length, biomass, tissue C : N and mycorrhizal colonization. CO2 fumigation led to greater root length (98%) in unfertilized plots, but root biomass increases under elevated CO2 were only found for roots <1 mm in diameter in unfertilized plots (59%). Neither fine root [C] nor [N] was significantly affected by increased CO2. There was significantly less root biomass in N-fertilized plots (19%), but fine root [N] and [C] both increased under N fertilization (29 and 2%, respectively). Mycorrhizal root tip biomass responded positively to CO2 fumigation in unfertilized plots, but was unaffected by CO2 under N fertilization. Changes in fine root [N] and [C] call for further study of the effects of N fertilization on fine root function. Here, we show that the stimulation of pine roots by elevated CO2 persisted after 14 years of fumigation, and that trees did not rely exclusively on increased mycorrhizal associations to acquire greater amounts of required N in CO2-enriched plots. Stimulation of root systems by CO2 enrichment was seen primarily for fine root length rather than biomass. This observation indicates that studies measuring only biomass might overlook shifts in root systems that better reflect treatment effects on the potential for soil resource uptake. These results suggest an increase in fine root exploration as a primary means for acquiring additional soil resources under elevated CO2.


Assuntos
Dióxido de Carbono/farmacologia , Florestas , Micorrizas/fisiologia , Nitrogênio/farmacologia , Microbiologia do Solo , Árvores/efeitos dos fármacos , Biomassa , North Carolina , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Estações do Ano , Solo/química , Árvores/crescimento & desenvolvimento , Árvores/microbiologia , Árvores/fisiologia
14.
J Hered ; 105(4): 566-571, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24620002

RESUMO

Since the 1970s, water temperatures along the Atlantic seaboard of the United States have risen by an average of 0.5 °C in summer months and 2.2 °C in winter months. In response, the distribution and abundance of several nearshore species have changed dramatically, but no study has attempted to document whether estuarine populations have evolved greater thermal tolerance. Here, we re-examine the classic latitudinal cline at lactate dehydrogenase (LDH) in the killifish Fundulus heteroclitus that was originally described by Dennis Powers and associates from samples collected between 1970 and 1972. Laboratory and field evidences indicated that northern and southern isozymes at muscle LDH are locally adapted to cold and warm temperatures, respectively. Despite the potential for evolutionary response at this adaptive locus, we detected no significant shift of the LDH cline from 20 to 30 F. heteroclitus collected at each of 13 locations between the early 1970s and 2010. We conclude that the microevolution of LDH-mediated thermal tolerance has not occurred, that shifts in alleles are too incremental to be distinguished from random processes, or that F. heteroclitus uses phenotypic and genetic mechanisms besides LDH to respond to warmer waters.


Assuntos
Aclimatação , Fundulidae/genética , L-Lactato Desidrogenase/genética , Animais , Oceano Atlântico , Simulação por Computador , Estuários , Evolução Molecular , Frequência do Gene , Isoenzimas/genética , Polimorfismo de Nucleotídeo Único , Temperatura , Estados Unidos
15.
Glob Chang Biol ; 20(4): 1313-26, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24123532

RESUMO

Large-scale, long-term FACE (Free-Air CO2 enrichment) experiments indicate that increases in atmospheric CO2 concentrations will influence forest C cycling in unpredictable ways. It has been recently suggested that responses of mycorrhizal fungi could determine whether forest net primary productivity (NPP) is increased by elevated CO2 over long time periods and if forests soils will function as sources or sinks of C in the future. We studied the dynamic responses of ectomycorrhizae to N fertilization and atmospheric CO2 enrichment at the Duke FACE experiment using minirhizotrons over a 6 year period (2005-2010). Stimulation of mycorrhizal production by elevated CO2 was observed during only 1 (2007) of 6 years. This increased the standing crop of mycorrhizal tips during 2007 and 2008; during 2008, significantly higher mortality returned standing crop to ambient levels for the remainder of the experiment. It is therefore unlikely that increased production of mycorrhizal tips can explain the lack of progressive nitrogen limitations and associated increases in N uptake observed in CO2 -enriched plots at this site. Fertilization generally decreased tree reliance on mycorrhizae as tip production declined with the addition of nitrogen as has been shown in many other studies. Annual NPP of mycorrhizal tips was greatest during years with warm January temperatures and during years with cool spring temperatures. A 2 °C increase in average late spring temperatures (May and June) decreased annual production of mycorrhizal root tip length by 50%. This has important implications for ecosystem function in a warmer world in addition to potential for forest soils to sequester atmospheric C.


Assuntos
Micorrizas/crescimento & desenvolvimento , Nitrogênio , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Árvores/microbiologia , Dióxido de Carbono , Ecossistema , Fertilizantes , Mortalidade , North Carolina , Pinus taeda , Solo/química , Microbiologia do Solo , Árvores/crescimento & desenvolvimento
16.
Ecol Lett ; 16(7): 862-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23659190

RESUMO

Root systems are important for global models of below-ground carbon and nutrient cycling. Notoriously difficult sampling methods and the fractal distribution of root diameters in the soil make data being used in these models especially susceptible to error resulting from under-sampling. We applied the concept of species accumulation curves to root data to quantify the extent of under-sampling inherent to minirhizotron and soil coring sampling for both root uptake and carbon content studies. Based on differences in sample size alone, minirhizotron sampling missed approximately one third of the root diameters observed by soil core sampling. Sample volumes needed to encounter 90% of root diameters averaged 2481 cm(3) for uptake studies and 5878 cm(3) for root carbon content studies. These results show that small sample volumes encounter a non-representative sample of the overall root pool, and provide future guidelines for determining optimal sample volumes in root studies.


Assuntos
Raízes de Plantas , Solo
17.
PLoS One ; 7(9): e45138, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049770

RESUMO

A common geographical pattern of genetic variation is the one-dimensional cline. Clines may be maintained by diversifying selection across a geographical gradient but can also reflect historical processes such as allopatry followed by secondary contact. To identify loci that may be undergoing diversifying selection, we examined the distribution of geographical variation patterns across the range of the killifish (Fundulus heteroclitus) in 310 loci, including microsatellites, allozymes, and single nucleotide polymorphisms. We employed two approaches to detect loci under strong diversifying selection. First, we developed an automated method to identify clinal variation on a per-locus basis and examined the distribution of clines to detect those that exhibited signifcantly steeper slopes. Second, we employed a classic [Formula: see text]-outlier method as a complementary approach. We also assessed performance of these techniques using simulations. Overall, latitudinal clines were detected in nearly half of all loci genotyped (i.e., all eight microsatellite loci, 12 of 16 allozyme loci and 44% of the 285 SNPs). With the exception of few outlier loci (notably mtDNA and malate dehydrogenase), the positions and slopes of Fundulus clines were statistically indistinguishable. The high frequency of latitudinal clines across the genome indicates that secondary contact plays a central role in the historical demography of this species. Our simulation results indicate that accurately detecting diversifying selection using genome scans is extremely difficult in species with a strong signal of secondary contact; neutral evolution under this history produces clines as steep as those expected under selection. Based on these results, we propose that demographic history can explain all clinal patterns observed in F. heteroclitus without invoking natural selection to either establish or maintain the pattern we observe today.


Assuntos
Fundulidae/genética , Loci Gênicos , Repetições de Microssatélites , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Seleção Genética , Alelos , Animais , Simulação por Computador , DNA Mitocondrial/genética , Frequência do Gene , Genótipo , Isoenzimas/genética , Malato Desidrogenase/genética , Filogeografia
18.
Chemosphere ; 86(9): 912-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22119282

RESUMO

Molting in crustaceans is an important endocrine-controlled biological process that plays a critical role in growth and reproduction. Many factors can affect this physiological cycle in crustaceans including environmental stressors and disease agents. For example the pathology of Taura Syndrome Virus (TSV) of shrimp is closely related to molting cycle. Similarly, endosulfan, a commonly used pesticide is a potential endocrine disruptor. This study explores interrelationships between pesticide exposure, virus infection and their interactions with physiology and susceptibility of the shrimp. Litopenaeus vannamei (Pacific white shrimp) were challenged with increasing doses of endosulfan and TSV (TSV-C, a Belize reference strain) to determine the respective median lethal concentrations (LC(50)s). The 96-h endosulfan LC(50) was 5.32 µg L(-1), while the 7-d TSV LC(50) was 54.74 mg L(-1). Subsequently, based on their respective LC(50) values, a 20-d interaction experiment with sublethal concentrations of endosulfan (2 µg L(-1)) and TSV (30 mg L(-1)) confirmed a significant interaction (p<0.05, χ(2)=5.29), and thereby the susceptibility of the shrimp. Concurrently, molt-stage of animals, both at the time of exposure and death, was compared with mortality. For animals challenged with TSV, no strong correlation between molt-stage and mortality was observed (p>0.05). For animals exposed to endosulfan, animals in the postmolt stage were shown to be more susceptible to acute toxicity (p<0.05). For animals exposed to both TSV and endosulfan, interference of endosulfan-associated stress lead to increasingly higher susceptibility at postmolt (p<0.05) during the acute phase of the TSV disease cycle.


Assuntos
Dicistroviridae , Endossulfano/toxicidade , Exposição Ambiental , Muda , Penaeidae/virologia , Praguicidas/toxicidade , Animais , Suscetibilidade a Doenças , Penaeidae/fisiologia , Estresse Fisiológico
19.
Parasitol Res ; 109(6): 1725-30, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21656267

RESUMO

The usefulness of the polymerase chain reaction with restriction fragment length polymorphism (PCR-RFLP) and partial sequencing of the cytochrome oxidase I (COI) gene was tested regarding the utility of these techniques in unraveling philometrid life cycles and, in particular, to determine putative paratenic host species. Our focus was to study three species of philometrids commonly found in the estuaries of South Carolina: Philometroides paralichthydis and Philometra overstreeti from the southern flounder, Paralichthys lethostigma and Philometra carolinensis from the spotted seatrout, Cynoscion nebulosus. A total of 473 fish in 19 species known to be potential prey of the spotted seatrout and the southern flounder were dissected. Of all nematode larvae found in the mesenteries of 53 fish of 10 species, 21 specimens were determined to be philometrids using PCR. The use of PCR-RFLP allowed the identification of larvae of P. carolinensis and P. overstreeti in the freshwater goby, Ctenogobius shufeldti, and P. overstreeti in mummichog, Fundulus heteroclitus. However, 12 RFLP profiles could not be matched to control species, thus demonstrating the limitation of this technique in areas where diversity of philometrids is not well known and higher than anticipated. Similarly, COI procedures provided unknown sequences that did not match those of nine philometrid species used as controls. We concluded that although both techniques showed some usefulness and promise, at this point, however, they demonstrate the need of increasing our knowledge of marine and estuarine philometrid biodiversity.


Assuntos
Doenças dos Peixes/parasitologia , Linguado/parasitologia , Reação em Cadeia da Polimerase/métodos , Infecções por Spirurida/veterinária , Espirurídios/classificação , Truta/parasitologia , Animais , Sequência de Bases , Biodiversidade , Complexo IV da Cadeia de Transporte de Elétrons/genética , Larva , Estágios do Ciclo de Vida , Dados de Sequência Molecular , Polimorfismo de Fragmento de Restrição , Alinhamento de Sequência , Análise de Sequência de DNA , Espirurídios/genética , Espirurídios/crescimento & desenvolvimento , Espirurídios/isolamento & purificação , Infecções por Spirurida/parasitologia
20.
Mol Ecol Resour ; 9(6): 1456-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21564932

RESUMO

tossm (Testing of Spatial Structure Methods) is a package for testing the performance of genetic analytical methods in a management context. In the tossm package, any method developed to detect population genetic structure can be combined with a mechanism for creating management units (MUs) based on the genetic analysis. The resulting Boundary-Setting Algorithm (BSA) dictates harvest boundaries with a genetic basis. These BSAs can be evaluated with respect to how well the MUs they define meet management objectives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...